Tight Bounds for Conflict-Free Chromatic Guarding of Orthogonal Art Galleries

نویسندگان

  • Frank Hoffmann
  • Klaus Kriegel
  • Subhash Suri
  • Kevin Verbeek
  • Max Willert
چکیده

The chromatic art gallery problem asks for the minimum number of “colors” t so that a collection of point guards, each assigned one of the t colors, can see the entire polygon subject to some conditions on the colors visible to each point. In this paper, we explore this problem for orthogonal polygons using orthogonal visibility—two points p and q are mutually visible if the smallest axisaligned rectangle containing them lies within the polygon. Our main result establishes that for a conflict-free guarding of an orthogonal n-gon, in which at least one of the colors seen by every point is unique, the number of colors is Θ(log logn). By contrast, the best upper bound for orthogonal polygons under standard (non-orthogonal) visibility is O(logn) colors. We also show that the number of colors needed for strong guarding of simple orthogonal polygons, where all the colors visible to a point are unique, is Θ(logn). Finally, our techniques also help us establish the first non-trivial lower bound of Ω(log logn/ log log logn) for conflict-free guarding under standard visibility. To this end we introduce and utilize a novel discrete combinatorial structure called multicolor tableau. 1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms, G.2.2 Graph Theory

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Tight Bounds for Conflict-Free Chromatic Guarding of Orthogonal Galleries

We address recently proposed chromatic versions of the classic Art Gallery Problem. Assume a simple polygon P is guarded by a finite set of point guards and each guard is assigned one of t colors. Such a chromatic guarding is said to be conflict-free if each point p ∈ P sees at least one guard with a unique color among all guards visible from p. The goal is to establish bounds on the function χ...

متن کامل

Special Guards in Chromatic Art Gallery

We present two new versions of the chromatic art gallery problem that can improve upper bound of the required colors pretty well. In our version, we employ restricted angle guards so that these modern guards can visit α-degree of their surroundings. If α is between 0 and 180 degree, we demonstrate that the strong chromatic guarding number is constant. Then we use orthogonal 90-degree guards for...

متن کامل

Guarding Orthogonal Art Galleries with Sliding Cameras

We study the problem of guarding an orthogonal art gallery with security cameras sliding back and forth along straight tracks. We show that if only vertical (alternatively, horizontal) tracks are allowed, then a solution minimizing the number of tracks can be found in polynomial time, and if both orientations are allowed, then a 3-approximation can be found in polynomial time.

متن کامل

Conflict-Free Colorings - Of Graphs and Hypergraphs - Diploma-Thesis of

Conflict-free colorings are known as vertex-colorings of hypergraphs. In such a coloring each hyperedge contains a vertex whose color is not assigned to any other vertex within this edge. In this thesis the notion of conflict-free colorings is translated to edge-colorings of graphs. For graphs G and H a conflict-free coloring of G ensures an edge of unique color in each copy of H in G. The mini...

متن کامل

Guarding Galleries with No Nooks (extended Abstract)

We consider the problem of guarding galleries that have no small nooks (regions that are visible from only a small fraction of the entire gallery). Intuitively, such galleries (of which convex galleries are a special but uninteresting case) should need fewer guards. We show that in any simply connected gallery in which every corner sees at least a fraction of the other corners there exist a set...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015